MIT researchers combine deep learning and physics to fix motion-corrupted MRI scans
SOURCE: HTTPS://NEWS.MIT.EDU/
AUG 17, 2023
The Role of AI in RAN Automation
SOURCE: INSIDEBIGDATA.COM
SEP 10, 2022
5G represents a tipping point within the telecoms industry where networks become too complex for humans to operate cost-effectively without the use of automation tools and technologies. Complexity is driven in part by 5G itself, which uses a much broader set of frequency bands, can prioritize services based on latency, and supports huge increases in the number of network elements and end-user devices. But there is a plethora of other changes which further increase complexity.
These include the evolution from physical hardware to virtual and cloud native networks, end-to-end network slicing, the adoption of Open Radio Access Network (RAN) technologies and the addition of new enterprise business services. There are also multi-technology networks with some communications service providers (CSPs) running 2G, 3G, 4G/LTE and 5G networks in parallel, as well as multi-vendor networks with typically two to four different RAN vendors deployed in the network.
Artificial intelligence (AI) and machine learning (ML) are becoming commonplace in the telecoms industry and are often the only way to manage the complexity we see in today’s multi-vendor, multi-technology networks. This complexity gets even more apparent in the RAN that are one of the most challenging domains to tackle due to its sheer distributed nature, number of network nodes and its proximity to the end users, which makes it very not surprisingly, a major consumer of OPEX.
RAN evolution embeds automation
The telecoms industry automation is strongly linked to the ubiquitous usage of AI – but where it makes more sense depending on the use case. For instance, improving CAPEX/OPEX rationalization and performance require actions in the network at scale. The good news is that the newest network technologies – 5G and Open RAN– have been designed for widescale automation. In fact, the O-RAN Alliance is defining a new service management and orchestration (SMO) architecture specifically designed to enable better RAN automation.
The key to success then is that network providers automate the right things and aim to continually improve performance, which requires applied intelligence. When it comes to the evolution of RAN automation, we can see AI and ML technologies used predominantly in three specific areas.
AI and ML are essential in modern mobile networks and any service management and orchestration systems must use and support the use of AI. AI is in everything we do.
About the Author
Peo Lehto, Head of Solution Area OSS, Ericsson Digital Services. Ericsson Digital Services provides solutions that realize customers’ digital transformation including software and services in the areas of monetization and management systems (OSS/BSS), telecom core (packet core and communication services), and cloud & NFV (Network Functions Virtualization) infrastructure. Peo has also led the IP & Transport practice for Ericsson in North East Asia, heading up the Fixed Broadband Convergence for Ericsson Japan, as well as leading the Node Development Organization EPG for Ericsson in Sweden. Peo is born in Sweden, 1968. He holds a Ms.Sc. degree in Electrical Engineering and an MBA in Industrial Marketing and Purchasing from Chalmers University of Technology in Gothenburg.
Sign up for the free insideBIGDATA newsletter.
Join us on Twitter: https://twitter.com/InsideBigData1
Join us on Facebook: https://www.facebook.com/insideBIGDATANOW
LATEST NEWS
WHAT'S TRENDING
Artificial Intelligence
Some Writers are Using Artificial Intelligence to Generate Their Articles
OCT 16, 2022
SOURCE: HTTPS://NEWS.MIT.EDU/
AUG 17, 2023
SOURCE: HTTPS://WWW.SCIENCEDAILY.COM/
AUG 21, 2023
SOURCE: HTTPS://WWW.SCIENCEDAILY.COM/
AUG 17, 2023
SOURCE: HTTPS://WWW.SCIENCEDAILY.COM/
AUG 07, 2023
SOURCE: HTTPS://WWW.INDIATODAY.IN/TECHNOLOGY/NEWS/STORY/69-MILLION-GLOBAL-JOBS-TO-BE-CREATED-IN-NEXT-FIVE-YEARS-AI-AND-MACHINE-LEARNING-ROLES-TO-GROW-IN-INDIA-2367326-2023-05-02
JUN 28, 2023
SOURCE: WILLIAM SHANKLIN II HTTPS://WWW.INOREADER.COM/ARTICLE/3A9C6E7525CAFAA2-RESEARCHERS-USED-MACHINE-LEARNING-TO-IMPROVE-THE-FIRST-PHOTO-OF-A-BLACK-HOLE
APR 14, 2023